If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=19x-12
We move all terms to the left:
4x^2-(19x-12)=0
We get rid of parentheses
4x^2-19x+12=0
a = 4; b = -19; c = +12;
Δ = b2-4ac
Δ = -192-4·4·12
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-13}{2*4}=\frac{6}{8} =3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+13}{2*4}=\frac{32}{8} =4 $
| -3x-8=-5x-6 | | 2=3.14*d | | -4x+33+2x-81=90 | | -8+6x+7x=44 | | b/2+4=-1 | | 22.5(10-x)+27.5x=250 | | 8x-9-8=4+2x | | 13X+12y+10=0 | | 16x+14+3x+29=90 | | 11x+102-87=180 | | x+5/7=x+8/4 | | 26-b=3×5 | | 5x^2=13x=0 | | 7x=23,x= | | 15x^2-x=6 | | -4.3=y/4+2.1 | | 256+-32x+x^2=202 | | x=5^2+3^3 | | 4b^2+6=-5 | | 4b^2+6=-6 | | 8(-4x-7)=-7x | | 2(2x+5)=2(2x+8)8÷7 | | 2x+x2=x2-8 | | 2x+(3−x)=10 | | 3=17+2x | | 0.5y+4.5=180 | | 2(2x+5)=2(2x+8) | | 6x-10.4x=20x-4x | | 0.5y+4.5=360 | | -2x+5x=-27 | | 7.5x^2+4x-90=0 | | 6u+7=19 |